Category "Visualization"


The Mathematics Genealogy Project is an amazing effort to record basic information about every mathematician in the world. We can create a family tree for any mathematician. Here is my tree:

For a description of how to create the graph of another mathematician’s genealogy, see Dana C. Ernst’s article.

I have been doing some reading about machine learning recently, using Python as an implementation language. I lot of the routines used are fairly easy to implement in IDL, so I have started filling out my library with IDL versions.

I have written a scatter plot matrix routine that takes a collection of vectors and makes all the scatter plots between pairs of them. For example, here’s a scatter plot matrix produced by the routine for the classic iris dataset:

If you want to use the routine, it’s probably easiest to clone my entire library.

FlowingData rounds up his list of best visualization projects of 2016:

Visualization continues its merging into the everyday — less standalone and more of a medium that blends with words. I think this is partially because of a concentration on mobile. There’s simply less visual space on a phone than there is a giant computer screen, so the visualization is stripped or split up into smaller pieces that are more easily digested while scrolling.

For example, the Rhythm of Food shows the popular food by time of year:

And if that is not enough for you, here’s a roundup of 2016 visualization roundups.

National Geographic collects the best maps of 2016:

It’s been a good year for map lovers. Whether you’re into old maps, new maps, or new ways of interacting with old maps, there was much to cheer about in 2016.

via kottke.org

The NSF has opened up voting for the People’s Choice for visualizations in the Photo, Illustration, Poster/Graphic, Interactive, and Video categories.

Voting closes Sunday December 4 at 11:59 p.m. PST.

D3 in Depth:

D3 in Depth aims to bridge the gap between introductory tutorials/books and the official documentation.

I have found D3 extremely useful for creating dynamic plots on dashboard style websites for monitoring data pipelines. This looks an excellent resource for learning it.

via FlowingData

Colorgorical is an alternative to ColorBrewer with a few different options for creating color tables. For example, you can add a couple specific colors that should be in the color table and let Colorgorical figure out the others which maximizes the perceptual difference between the colors. Colorgorical seems particularly well suited to generating qualitative color tables, e.g., to find sufficiently different colors for each line in a plot.

via FlowingData.

Motivated by the below chart of the age distribution of Olympic athletes, Junk Charts presents several techniques to visualize multiple distributions:

Age distribution of Olympic athletes

Candidates include the traditional boxplots used by statisticians as well variations and a stack of histograms. I think violin plots, suggested by a commenter, are a nice compromise showing the full distribution.

John Nelson produced this beautiful map of how the boundaries of US droughts have changed over the last five years with data from the US Drought Monitor:

Link via FlowingData.

Part 2 (of what promises to be a four part series) of the great comparison of Google Maps and Apple Maps by Justin O’Beirne. See part 1 before starting with part 2.

older posts »